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Abstract

In this paper we investigate the problem of detecting communities in graphs. We use
the eigenvectors of the graph Laplacian in order to solve a traditional graph parti-
tioning problem. Then we will examine the concept of the modularity matrix, which
is used to measure the deviation between the actual and expected number of edges
between each pair of vertices, and how its eigenvectors can be used to construct the
communities in a network. Finally, we will review some applications of these concepts
to real-world networks.

1 Introduction

A graph or a network, defined as a set of nodes connected to each other by links,
serves as an integral structure in many disciplines, including mathematics, com-
puter science, physics, biology, and the social sciences. An interesting problem
in network theory is that of finding community structure in a network, which
aims to find groups of nodes, or communities, which have more links within the
communities than between communities.

There is typically useful information found at the community level that is
not readily available from studying the network as a whole. For example, con-
sider the United States Congress as a network of the Congressmen. Then the
application of community-detection methods will typically separate the Repub-
licans and Democrats into different communities. If we find data concerning
these two communities, such as the average vertex degree, we can draw con-
clusions concerning members of the two parties, which could not be done by
looking at the statistics for the whole graph. In addition, we can also determine
how strongly each node is tied to its community. This is useful because nodes
that are only weakly connected to their own community may serve as ‘bridges’
between different communities [5]. Such a node may have a useful interpreta-
tion; for example, in the Congressional network the node may be interpreted as
a moderate.

In the last few years, many methods of community detection have been
developed [1], but we will focus on a few in particular. The traditional method
of spectral partitioning, which uses the graph Laplacian matrix, is first discussed
along with its limitations. In the next section, the concept of modularity, a
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benefit function which measures the difference between the number of links
within a community versus the expected number of links, is formulated as a
matrix in order to give a method for community detection. We finish the paper
with a discussion of some applications of the method.

2 Spectral partitioning of graphs

Consider an undirected, simple graph G with n vertices {1, 2, . . . , n} and m
edges, and let A = (aij) be its adjacency matrix, where aij = 1 if there is an
edge connecting vertices i and j, and aij = 0 otherwise. Let ki =

∑
j Aij be

the degree of vertex i, and let D be a diagonal matrix with dii = ki. Then we
define the Laplacian matrix of G to be L := D − A. Two useful properties of
the Laplacian matrix are that it is positive semidefinite [7], and that 0 is an
eigenvalue of L with eigenvector (1, 1, . . . , 1), because its rows and columns sum
to 0. Define a vertex separator S to be a set of vertices such that G\S consists of
two connected components. We now introduce an algorithm from [7] which will
find a vertex separator S that contains as few vertices as possible and separates
the vertices of G into nearly equal parts.

Algorithm 1

1. Compute the eigenvector v2 corresponding to the second smallest eigenvalue,
which is the first non-zero eigenvalue, and let vm be the median value the
components of v2.

2. Partition the vertex set into two sets A′ and B′, where A′ = {i : vi ≤ vm},
and B′ = V \A′.

3. Let A1 be the set of vertices in A′ adjacent to some vertex in B′, and let B1

be the set of vertices in B′ adjacent to some vertex in A′. Now compute
H , the bipartite subgraph induced by the vertex sets A′ and B′.

4. Now we find the minimal vertex cover S of H by taking a maximum matching
[3]. Choose As ⊂ A1 and Bs ⊂ B1 such that S = As ∪ Bs. Then S is the
vertex separator we want, and it separates G into 2 parts with vertex sets
A′\As and B′\Bs.

This algorithm separates a graph into two components. In addition, since
only |As|+|Bs| is invariant, typically the structure of H permits some freedom in
choosing As and Bs,, so we can choose them such that A and B are less unequal
in size. The algorithm has a worst case time complexity of O(

√
nm). Unfor-

tunately, this means that the method is only reasonable for sparse networks,
or networks which have relatively few edges, and does not allow for weighted
networks, which are common in social networks. In addition, sometimes it is
desirable instead to find a partition of the graph that may not disconnect the
graph completely, but leaves as few edges as possible between the two parts. To
do this, we introduce a result from [5].
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Let s be an index vector of the groups, that is, let si = 1 if i is one group and
si = −1 if i is in the other group. We wish to compute the cut size R, which is
the number of edges that run between the two groups. R can be computed by
the equation

R =
1
2

∑
i,j:si �=sj

Aij . (1)

Our objective is to minimize this quantity. First we consider the problem if s
could take on any value rather than simply ±1.

Lemma 1. If the restriction that s must take values of ±1 is ignored, then the
vector s that minimizes R will be the eigenvector corresponding to the smallest
eigenvalue of the Laplacian Matrix.

Proof. By the definition of s, we can rewrite (1) as

R =
1
4

∑
ij

(1 − sisj)Aij . (2)

Now using the definition of the degree of the vertex, we can express the first
term of the sum in (2) as∑

ij

Aij =
∑

i

ki =
∑

i

s2
i ki =

∑
ij

sisjkiδij ,

where δij is the Kronecker delta function. Therefore,

R =
1
4

∑
ij

sisj(kiδij − Aij), (3)

but note that kiδij − Aij is Lij , so (3) has a convenient matrix form

R =
1
4
sT Ls.

Now write s as a linear combination of the normalized eigenvectors vi of L by
taking s =

∑n
i=1 aivi, where ai = vi

T s. This in combination with sT s = n
means that

n∑
i=1

a2
i = n.

Therefore, we now have

R =
∑

i

aivi
T L

∑
j

ajvj =
∑
ij

aiajλjδij =
∑

i

a2
i λi, (4)

where λi are the eigenvalues of L, written in increasing order. Now it is clear
that in order to minimize R, we wish to choose the ai such that the greatest
possible weight is assigned to the eigenvectors coresponding to the smallest
eigenvalues. In particular, if we choose a1 = 1 and aj = 0 for all j �= 1, we will
have the minimal R.
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We know that smallest eigenvalue of the Laplacian matrix is 0 and its cor-
responding eigenvector is (1, 1, . . . , 1). However, if we choose this vector to be
the index vector, then we place all of the vertices in one group and create a cut
size of 0. Of course, this is not an interesting solution to the problem, so we
would like to find a nontrivial solution. In this case, if we fix the sizes of the
two groups to be n1 and n2, then we can fix the coefficient a1 in (4) to be

a2
1 = (v1

T s)2 =
(n1 − n2)2

n
. (5)

Then if we wish to minimize R, assuming that there are no more constraints
on s, we should take s parallel to the second eigenvector v2, also called the
Fiedler vector, but s is constrained to take values of 1 or −1, and the number
of vertices in each group is contrained. Therefore, the approximation is not
perfect. In addition, constraining the number of vertices in each group is in
many instances an unrealistic simplication of the problem, because in most
cases we do not know the sizes of the communities in advance [5]. Therefore,
we need a different approach to more capably handle these cases. The approach
that will be discussed is based on the modularity matrix.

3 The Modularity Matrix

When considering the problem of finding communities in a network, we note
that communities should intuitively have more links between them than what is
expected. This is embodied by the concept of modularity [5], [6]. The modularity
Q of a set of communities is defined as

Q = (number of edges within communities) −
(expected number of edges within communities).

Our objective is to find a partition of the network into communities such that the
modularity is maximized. First we consider the problem of the optimal division
of a network into two subcommunities. We will formulate the modularity in
matrix form [5]. Consider an adjacency matrix A, and a “null model” matrix
P that gives the expected number of edges between any two vertices. The
modularity is then

Q =
1

2m

∑
ij

[Aij − Pij ]δ(gi, gj), (6)

where m is the total number of edges in the network, gi is the community in
which i is contained, and δ is the Kronecker delta function.

To proceed, one must find a suitable P . First, we assume that P is symmetric
and has zero diagonal, since the graph is undirected and simple, and that the
sum of the entries in P are the same as the sum of the entries in A. That is∑

ij

Pij =
∑
ij

Aij . (7)
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Second, we assume the “null model” has the same degree distribution as the
real-world network. Therefore, we require that∑

ij

Pij = ki, (8)

where ki, the degree of vertex i, is calculated by using

ki =
∑

j

Aij .

Clearly, if (8) is satisfied, then (7) is automatically satisfied as well. Now if we
make a simple assumption of randomness, we can compute Pij , as demonstrated
by the next lemma.

Lemma 2. If we place edges subject to (8) uniformly at random, then

Pij =
kikj

2m
.

Proof. If edges are placed at random, then the probability that a randomly
chosen edge is attached to the vertex i depends only on the degree ki of that
vertex, and the probability that the edge is attached to some vertex at one end
is independent of the probability that it is attached to any other vertex at the
other end. Therefore, the expected number of edges Pij between vertices i and
j is f(ki)f(kj), where f is the same function for both i and j because Pij is
symmetric. Then (8) implies that

n∑
j=1

Pij = f(ki)
n∑

j=1

f(kj) = ki,

for all i, which means that f(ki) = Cki for some constant C. Now if we apply
(7), we get that

2m =
∑
ij

Pij = C2
∑
ij

kikj = (2mC)2,

which means that C = 1√
2m

, so

Pij =
kikj

2m
.

Because we are considering the division of a network into two subcommuni-
ties, we can define an index vector s with |s| = n, and each entry has the value
1 if the corresponding node is in one community and the value −1 if it is in the
other. We can now express the Kronecker delta in (6) in terms of the elements
of s by noting that

δ(gi, gj) =
sisj + 1

2
,
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which means that we can manipulate (6) to get

Q =
1

4m

∑
ij

[Aij − Pij ](sisj + 1) =
1

4m

∑
ij

[Aij − Pij ]sisj

where the second equality follows due to (7). This expression can be written in
the matrix form

Q =
1

4m
sT Bs, (9)

where B := A − P is the modularity matrix.
If s were unconstrained, then the modularity would be maximized for s

parallel to u1, the eigenvector of B with the largest eigenvalue (i.e., the leading
eigenvector). However, the elements of s must be ±1, so we must settle for
an approximation. We want s to be as close to u1 as possible by assigning
the value +1 to an element in s1 if the corresponding element in u1 is positive
and assigning the value −1 if the corresponding element is negative. If the
corresponding element in u1 is 0, we assign the element to the group that would
give the greatest modularity. This yields a division of the network into two
subcommunities which maximizes the modularity.

We would like to apply this procedure recursively in order to divide the net-
work into more than 2 subcommunities, but the contribution to the modularity
for each subdivision after the first is not given correctly by the preceding for-
mulas. Therefore, we need to find the modularity contribution from dividing a
community. Let G be the set of vertices in the community to be divided, and
let nG be the number of vertices within the community. Let S be an nG × c
index matrix denoting the subdivision of the community into c subdivisions
such that Sij = 1 if vertex i belongs to subcommunity j and Sij = 0 otherwise.
Therefore, we can now find the difference ΔQ between the modularities of the
network before and after the subdivision of the community by writing

ΔQ =
∑

i,j∈G

c∑
k=1

BijSikSjk −
∑

i,j∈G

Bij

=
c∑

k=1

∑
i,j∈G

[
Bij − δij

∑
l∈G

Bil

]
SikSjk

= Tr(ST B(G)S), (10)

where the constant factor 1
4m has been omitted for convenience, because it does

not affect S.
B(G) is an nG × nG generalized modularity matrix indexed by the vertex

labels i, j of the vertices in G and having values

B
(G)
ij = Bij − δij

∑
l∈G

Bil,

where the Bij are the values of B. Note that the form of (10) is the same
as that of (9), with s replaced by S, and that if G consists of all vertices of



4 Applications 7

the graph, B(G) = B. Therefore, substituting B(G) in place of B gives the
correct modularity change in the network for the division of any subcommunity,
including the entire network. An algorithm for computing the division of a
network into more than 2 communities can now be given. We recursively apply
the procedure to the 2 communities created at each step by recomputing B(G)

for the subcommunities, and we terminate the algorithm if no division with
positive modularity change can be found [5].

However, in some cases this procedure gives very few iterations. For ex-
ample, in the legislation cosponsorship network of Congress, which I studied
this past summer for my SURF, the procedure terminates after one division.
Since we would like to see more hierarchical structure, we need to adapt the
procedure. Instead of terminating the procedure when no division with positive
modularity can be found, we can try to find a division by considering the com-
munity as a full network. This means that we use B restricted to the vertices of
the community instead of computing B(G), which is expressed formally in the
following algorithm.

Algorithm 2

1. Compute the altered modularity matrix B(G) of the community G; we know
that B(G) = B if G is the entire network.

2. Compute the leading eigenvector of B(G). Use it to compute the index vector
s and the modularity change Q.

3. If Q > 0, then apply the procedure on the two communities created by the
partition as indicated by s.

4. If Q = 0, then take as the modularity matrix B′,the submatrix of B corre-
sponding to the vertices of G, and compute the leading eigenvector, index
vector s′, and modularity change Q′. Note that by construction 0 is always
an eigenvalue of the modularity matrix.

5. If Q′ > 0, then apply the procedure on the two communities created by the
partition as indicated by s′, using B′ as the modularity matrix of the full
network.

6. If Q′ = 0, then terminate the algorithm.

4 Applications

The original Newman algorithm has been applied to several networks with rea-
sonable success [6]. For example, the algorithm was applied to the social network
of 62 bottleneck dolphins living in Doubtful Sound, New Zealand [4]. When la-
belling the dolphins with the known group identifications that occurred after a
dolphin left the group, the Newman algorithm identified more dolphins correctly
than the spectral partitioning algorithm did; it misidentified only 3 out of the
62 dolphins while the spectral partitioning algorithm misidentified 10 dolphins



4 Applications 8

[5]. The algorithm has also been used to analyze a network of political books [2],
which was compiled by taking recent books concerning American politics and
connecting them with edges based on data from Amazon.com indicating which
pairs of books are frequently purchased by the same customers. In addition to
separating books aligned with conservative or liberal viewpoints, as discussed
in [6] the elements of the first eigenvector u1 can be used as an indicator of
the strength of connection of each element to its community. Therefore, we can
pick out a most left-wing and right-wing book: in this case they turn out to be
Bushwacked by Molly Ivins and Lou Dubose and A National Party No More by
Zell Miller, respectively [5].

The altered Newman algorithm has also been applied to several applications.
For example, it has been applied to the Zachary Karate Club network, studied
by Zachary in 1977 [10], which is a karate club at American University that
split into two karate organizations. This network has become a canonical test
case for community detection methods. Using the modified Newman algorithm
predicts the split correctly by correctly identifying the association of each mem-
ber. In addition, it has been applied to the legislation cosponsorship network of
the US Congress [11]. This network uses the members of Congress as nodes and
connects them with links if they have sponsored or cosponsored a bill together.
In fact, the need to modify the Newman algorithm came from this network,
because applying the original algorithm to it yielded only one division, which
only told us the well-known political truth that the most important predictor
of a politician’s behavior is his party affiliation. My advisor and I devised the
modification during this past summer in order to find more structure in the net-
work. With the modified algorithm, we were able to get additional divisions of
the network and thus additional hierarchical levels, which uncovered additional
features , such as a group of Southern Democrats that seem to have collabo-
rated with the Republicans, especially in the 1970’s, or a group of Northeastern
Republicans which seem to be collaborating with the Democrats.
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