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It is important in computer science, sociology, and so on to investigate complex bipartite graphs from a
viewpoint of statistical physics. We propose a model to generate complex bipartite graphs without growing; the
bipartite graphs are assumed to have two sets of the fixed numbers of nodes and a fixed number of edges
between nodes belonging to different sets of nodes. In this model, essential ingredients are a preferential
rewiring process and a fitness distribution function. By using the preferential rewiring process, we confirm that
a bipartite graph reaches a stationary state after a sufficiently long time has passed. We find that the obtained
bipartite graph has a scale-free-like property when a suitable fitness distribution is used. It turns out that a
condensation of edges takes place in the cases of certain fitness distributions.

DOI: 10.1103/PhysRevE.72.036120 PACS number�s�: 89.75.Fb, 02.50.Ey

I. INTRODUCTION

Many complex systems have networks as their backbone.
In the networks, nodes represent elementary units composing
a complex system and edges express interactions or relations
between pairs of elementary units. In recent studies, a scale-
free property has been discovered in the Internet �1�, the
World Wide Web �2�, social networks �3–6�, metabolic net-
works �7,8�, and so on. A network with the scale-free prop-
erty is characterized by the degree distribution P�k� with a
power-law behavior; P�k� is defined as the probability that a
node is connected to k other nodes. It has been revealed that
the scale-free networks have several interesting properties
different from regular lattices or random networks proposed
by Erdös and Rényi �9�, so that big effort has been devoted
to the study of complex networks recently �10–12�.

Some of the complex networks in the real world have
bipartite graphs which are suitable to represent their network
structure. A bipartite graph is defined as a network in which
nodes are divided into two sets so that no edge connects two
nodes in the same set. In the social science literature, the
bipartite graph is called a collaboration network. The col-
laboration network is generally defined as follows: there are
two sets of nodes, one representing a set of actors, and the
other a set of collaboration acts. An edge is a connection
between an actor and a collaboration act which is partici-
pated by the actor. Therefore, the actors participating in a
common collaboration act relate to each other through that
act. Figure 1�a� shows an example of bipartite graphs; there
are 7 actors and 4 collaboration acts. We see that there are no

edges between nodes in the same set, but there exist edges
connecting actors and collaboration acts. One of examples of
the collaboration networks is a scientific collaboration net-
work. In the scientific collaboration network, actors represent
scientists, and collaboration acts denote scientific papers. An
edge is connected between a scientist and a paper written by
the scientist, and scientists are related by their coauthorship
of scientific papers. One of the other examples of collabora-
tion networks is a corporate board and director network
�13�, in which actors represent directors in companies and
collaboration acts stand for companies. An edge connects a
director and a company if the director sits on the board of the
company.
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FIG. 1. �a� An example of bipartite graphs. �b� The one-mode
projection of the network in �a�.
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While it has been revealed that some of the collaboration
networks have the scale-free property �3–6�, much study has
not been done on the generation of complex networks with
the scale-free property expressed by bipartite graphs. New-
man et al. �14� have proposed a model for generating a com-
plex bipartite graph, in which two degree distributions for
both types of nodes are given and edges are randomly con-
nected under the constraint that their degree distributions are
fixed. Ramasco et al. �4� and Ramezanpour �15� have pro-
posed the other type of models for generation of complex
bipartite graphs; those are growing networks in which the
number of nodes and that of edges are increasing and newly
added edges are connected to nodes by a suitable rule. In
order to generate a complex network of bipartite graph with
the scale-free property, Ramasco et al. �4� have applied a
rule, which is based on the concept of the preferential attach-
ment proposed by Barabási and Albert �16,17�, to their
model for generating complex networks.

A certain class of real collaboration networks are de-
scribed by growing bipartite graphs. The scientific collabo-
ration network is one of such growing networks. In some
cases, a scientist has collaboration with other scientists for
research activities, and as a result, a paper is written in co-
operation with those scientists. Thus, once edges connect a
scientist and a paper, those edges in the network are fixed
and not removed. However, there is the other types of col-
laboration networks in which the size of networks does not
grow rapidly, but the structure of the networks changes with
time rapidly. For instance, in corporate board and director
networks, we consider that the number of companies in-
creases slowly and hence is considered to be fixed approxi-
mately, but directors in companies change in turn rather rap-
idly. This is a kind of adiabatic approximation. Therefore, we
use a nongrowing bipartite graph for describing the network
structure in this case; the nongrowing bipartite graph is de-
fined that the numbers of resources such as actors, collabo-
ration acts, and edges, are fixed, but the edges in the graph
are dynamically rewired. Recently, nongrowing models for
unipartite graphs, which consist of only one set of nodes,
have attracted attention to scientists, and then several models
have been proposed in order to generate nongrowing com-
plex networks with the scale-free property �18–21�. A non-
growing model for bipartite graphs has recently been pro-
posed �22�, and the existence and the size of the giant
component have been investigated.

In the present paper, we propose a model for the complex
bipartite graph with the fixed numbers of resources; essential
ingredients are a preferential rewiring and a fitness distribu-
tion function in the model. We show that the model generates
the complex networks with the scale-free property for some
fitness distribution functions. The fitness parameters corre-
spond to different abilities to compete for edges, and it seems
reasonable that each node �agent� in the real world has a
different ability. It is revealed that the randomness of fitness
parameters is necessary for a fat-tailed degree distribution,
and a non-fat-tailed fitness distribution can generate a net-
work with a fat-tailed degree distribution, as in the case of
the threshold model �18�. Furthermore, a condensation phe-
nomenon is also investigated from a viewpoint of statistical
physics; the critical exponents are estimated by using the
finite size scaling.

The outline of the paper is as follows. In Sec. II, we
introduce a notation of a bipartite graph and explain a one-
mode projection of the bipartite graph. We introduce a model
of generating complex bipartite graphs in Sec. III, and
present an analytical treatment for a degree distribution by
using a rate equation approach. Section IV contains results of
numerical experiments. We show the degree distributions of
obtained bipartite graphs, and then compare these degree dis-
tributions with those of their one-mode projections. We also
make a comparison between the results obtained by the ana-
lytical treatment described in Sec. III and those by numerical
experiments. An unexpected phenomenon, so-called conden-
sation of edges, has been found in the results of numerical
experiments in Sec. IV, and hence we investigate the phe-
nomenon in more detail in Sec. V. Finally, we draw the main
conclusions in Sec. VI.

II. BIPARTITE GRAPH AND ONE-MODE PROJECTION

A bipartite graph consists of two sets of nodes. In the
present paper, we assign each node in one set to a collabo-
ration act and each node in the other set to an actor. An edge
exists only between a collaboration act and an actor, but
there is no edge between two nodes in the same set. We
denote the number of actors as M and that of collaboration
acts as N. A bipartite graph is represented by an M �N ad-
jacency matrix B= �bi��M�N, whose components are bi�=1 if
there is an edge between actor i and collaboration act �, and
0 otherwise. Note that the adjacency matrix B is a binary
matrix, and is neither square nor symmetric in general.

Next, we consider a one-mode projection of a bipartite
graph. The one-mode projection produces a network which is
composed of the actors connected to each other whenever
they share a collaboration act. We call a network obtained by
one-mode projection from a bipartite graph simply as a one-
mode projection in the present paper. The M �M adjacency
matrix of the one-mode projection, F= �f ij�M�M, is defined as

f ij = �0 if i = j ,

�
�=1

N

bi�bj� otherwise.� �1�

Here we set the diagonal elements to 0. If actors i and j do
not belong to the same collaboration act �, we have either
bi�=0 or bj�=0 �or the both are zero�, and hence we calcu-
late the number of collaboration acts connecting actor i and
actor j by using the second expression of the right-hand side
in Eq. �1�. We notice that the adjacency matrix is symmetric.

The one-mode projection is allowed to have multiple
edges, and hence we define the degree of actor i in the one-
mode projection, ki, as follows:

ki = �
j

f ij . �2�

We consider the degree distribution of the one-mode projec-
tion, P�k�, using the degree defined by Eq. �2�. We notice
here that “one-mode projection” is used as a synonym of
“weighted network” and ki of Eq. �2� is also called as
“strength.”
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Ramasco et al. �4� have investigated properties of the or-
dinary random graphs as for the one-mode projection. In Sec.
IV B, we make a comparison between the degree distribution
of actors, Q�m�, and the one of the one-mode projection,
P�k�. We also illustrate one-mode projections obtained by
our model with several examples in Sec. V.

III. NONGROWING MODEL FOR COMPLEX BIPARTITE
GRAPH

A. Preferential rewiring process

We consider an undirected bipartite graph. We assume
that the number of collaboration acts, that of actors, and that
of edges are fixed, respectively, in the bipartite graph. Two
independent degree distributions are defined in the bipartite
graph: one is the degree distribution of collaboration acts,
S�n�, which is the probability that any collaboration act has n
actors participating in a collaboration act; the other is the
degree distribution of actors, Q�m�, which shows the prob-
ability that any actor takes part in m collaboration acts. In the
present paper, we neglect actors with no edges when we
evaluate the degree distribution of actors, Q�m�, so that m
should be greater than or equal to 1 in the argument of the
degree distribution Q�m�. Collaboration acts with only one
edge do not play a role in connecting actors, and then we
have n�2 in the argument of the degree distribution of col-
laboration acts, S�n�.

We explain a method for generating initial networks. In
empirical data on bipartite graphs, it has been reported that
some bipartite graphs have an exponential degree distribu-
tion of collaboration acts and an exponential or a power-law
degree distribution of actors �4�. Therefore, we fix the degree
distribution of collaboration acts, S�n�, as an exponential
form. The degree distribution S�n� is now defined as

S�n� =
1

�n	 − 2
exp
−

n − 2

�n	 − 2
� , �3�

where �n	 is the average degree of the collaboration acts and
n is an integral value with n�2. Then, we focus our atten-
tion on the degree distribution of actors, Q�m�. We are inter-
ested in whether the degree distribution Q�m� becomes an
exponential form or a power-law form.

We have four parameters for generating initial networks;
those are the number of actors, M, that of collaboration acts,
N, the average degree of actors, �m	, and the average degree
of collaboration acts, �n	. However, there is one relationship
among these parameters:

N�n	 = M�m	 = K , �4�

where K is the total number of edges in the bipartite graph.
In the present paper, we set initially the number of actors, M,
that of collaboration acts, N, and the average degree of ac-
tors, �m	. Using these parameters, we calculate the average
degree of collaboration acts, �n	, by means of Eq. �4�.

An initial network is generated as follows.
�I� We generate N random numbers, �n�1���N�, from

a given distribution S�n� and assign n� to collaboration act �.

The assigned number, n�, is the number of edges connected
to collaboration act �.

�II� For each collaboration act � ,n� different actors are
selected randomly and connected to the collaboration act �.
Note that there should be only one edge between a collabo-
ration act and an actor; multiple edges are not allowed.

After preparing an initial network, we apply a preferential
rewiring process for the initial network. The preferential re-
wiring process is the following operations.

�i� We select randomly a collaboration act � and an edge

l̂�j which connects collaboration act � to actor j.

�ii� The edge l̂�j is removed, and replace it with a new

edge l̂�j� that connects the collaboration act � to an actor j�
chosen randomly with a probability

� j� =
� j��mj� + 1�

�
j

� j�mj + 1�
, �5�

where mj is the number of edges connected to actor j. If

there is already the edge l̂�j�, we choose a different actor j�
with the probability � j�. A coefficient �i is a fitness param-
eter, which represents that each actor has a different ability
to compete for edges. A value of the fitness parameter �i is
chosen from a fitness distribution ����. We assume that once
the fitness parameter is assigned to each actor, it does not
change in time.

Note that the probability �i is not proportional to mi, but
to mi+1, so that there is a nonzero probability that isolated
actors �mi=0� acquire new edges.

By using the preferential rewiring process, we find that
the network reaches a stationary state in the numerical ex-
periments after sufficiently many operations. Hence we ana-
lyze the stationary state after 300M operations for each case,
if otherwise is not stated, because we have checked station-
ary states are obtained at near 200M operations in those nu-
merical experiments �23�.

B. Analytical treatment

Using a rate equation approach, we describe a time evo-
lution of the average number of actors, with which we may
calculate a degree distribution of actors, Q�m�. The similar
approach using a generating function is given in Ref. �21�.

We denote the average number of actors with m edges and
fitness parameter � in �� ,�+d�� at time t as qm�� , t�. The
time evolution of qm�� , t� is described as

�qm��,t�
�t

= −
�m + 1��qm��,t�

Z�t�
+

m�qm−1��,t�
Z�t�

−
mqm��,t�

M�m	

+
�m + 1�qm+1��,t�

M�m	
. �6�

We show all the processes in the right-hand side of Eq. �6� in
Fig. 2. The first term on the right-hand side of Eq. �6� rep-
resents the loss of actors with m edges when they obtain a
new edge, while the second term is due to the increase in the
number of actors with m edges when an actor with m−1
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edges obtains a new edge. The third and last terms are due to
the loss of actors with m and m+1 edges by losing edges to
be rewired, respectively. As stated before, M is the number
of actors and �m	 is the average degree of actors. Z�t� and
M�m	 are normalization factors; the factor Z�t� is defined by
Z�t�=�m�m+1���qm�� , t�d�.

In order to consider the stationary solution of Eq. �6�, we
set qm����qm�� , t→��. The stationary solution then satis-
fies the following equation:

�m + 1��
Z

qm��� −
m + 1

M�m	
qm+1���

=
m�

Z
qm−1��� −

m

M�m	
qm��� = const, �7�

where Z=�m�m+1���qm���d�. In the present paper, we set
the constant to zero by assuming the detailed balance in the
stationary state between the state with m−1 edges and that
with m edges �or the state with m edges and that with m+1
edges�. Thus we have the following equation from Eq. �7�:

m�

Z
qm−1��� −

m

M�m	
qm��� = 0. �8�

From the single recurrent Eq. �8�, we obtain the expression
of qm��� given as follows:

qm��� = q0���
�M�m	
Z

�m

. �9�

Note that when Z	�M�m	, the value of qm��� diverges as
the value of m increases, and hence another method will be
needed for evaluating the degree distribution. The number of
actors with m edges is calculated by

qm =� d� ����qm��� . �10�

Then, the degree distribution of actors, Q�m�, is obtained by

Q�m� =
qm

�
m=1

�

qm

. �11�

In Eq. �9�, q0��� and Z are not explicitly known and hence
we cannot derive the degree distribution in general. But we
can explicitly derive the degree distribution for the case of
the delta-function fitness distribution ����=
��−1�; in this
case we just consider only actors with fitness parameter 1
and hence the factor Z is easily calculated. The analytical
result in the case of the delta-function fitness distribution is
presented in Sec. IV D.

IV. RESULTS OF OBTAINED COMPLEX BIPARTITE
GRAPH

A. Basic character of the network obtained by the model

One of the features of networks obtained by our model is
that the network has many isolated actors. When we make
the one-mode projection of the obtained bipartite graph, we
find that there are many isolated actors and only one giant
cluster of actors. In other words, there is no small cluster at
all, but only one giant cluster exists; a small cluster means an
isolated cluster in which a few actors are connected to each
other. This feature stems from a “winner-take-all” property.
Figure 3�a� shows an example of initial networks with the
number of actors M =50, the number of collaboration acts
N=40, the average degree of actors �m	=3.0, and the aver-
age degree of collaboration acts �n	=3.75. The figure was

FIG. 2. The processes in the right-hand side of Eq. �6�. The
process 1 denotes the first term, the process 2 the second, and so on.
The arrows show how the number of edges of an actor changes.
After a collaboration act and an edge connected to the collaboration
act are randomly chosen, we remove the edge which corresponds to
the arrows in the processes 3 and 4. In the processes 1 and 2, the
arrows correspond to rewiring to preferentially chosen actors.

FIG. 3. �a� An example of initial networks generated by the
method described in Sec. III A. The network has the following pa-
rameter values: M =50, N=40, �m	=3.0, and �n	=3.75. �b� An ex-
ample of networks obtained by our model after reaching a station-
ary state. In this example, we have used the uniform fitness
distribution ����=1 �0���1� and repeated 100M steps of the
preferential rewiring process.
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produced by using Pajek’s software �24�. We have used the
uniform fitness distribution ����=1 �0���1� and per-
formed 100M steps of the preferential rewiring process for
the initial networks; this is a snap shot after reaching a sta-
tionary state. We have confirmed that 100M steps are suffi-
ciently long for obtaining stationary states in this case. Fig-
ure 3�b� shows the obtained network. As we can see in Fig.
3�b�, there are a lot of isolated actors; there are 23 isolated
actors in Fig. 3�b�, while there is only one isolated actor in
Fig. 3�a�.

B. Degree distribution of actors

Figure 4 shows examples of the degree distribution of
actors, Q�m�, of the obtained bipartite graphs for several fit-
ness distribution by using the proposed preferential rewiring
process. In the numerical experiments, we have used the ini-
tial networks with the number of actors M =10000, the num-
ber of collaboration acts N=8000, the average degree of ac-
tors �m	=3.0, and the average degree of collaboration acts
�n	=3.75. We have applied 300M steps of the preferential
rewiring process to the initial networks. We have checked the
obtained degree distribution of actors and other properties
from 200M steps to 500M steps, and found that those do not
change. Then we can consider that a stationary state is al-
ready reached with 300M rewiring steps. The data are aver-
aged over 20 realizations; we have performed the numerical

experiments for 20 different initial networks with the same
values of M ,N , �m	, and �n	.

Here we use four different fitness distributions. First, we
consider the delta-function fitness distribution given by
����=
��−1�. In this case, all fitness parameters are the
same values regardless of actors ��i=1, ∀ i�. Figure 4�a�
shows the result in this case. The degree distribution Q�m�
does not show a power-law behavior; it has an exponential
decay. Figure 4�b� shows the result in the second case in
which the uniform fitness distribution given by ����=1 �0
���1� is used. In this case, the network has a scale-free-
like property; the meaning of scale-free-like is that a degree
distribution has a power-law form for a wide range of m. The
solid line in Fig. 4�b� corresponds to Q�m��m−1.87. Figures
4�c� and 4�d� show the results for the cases with the expo-
nential fitness distribution given by ����=e−� �0��� +��
and the Poisson fitness distribution with the average 8, re-
spectively. In both cases, while the degree distributions Q�m�
have the scale-free-like property except large m, it is possible
that several actors have very large degrees because the de-
gree distribution has a nondecaying tail for large m. These
degree distributions suggest that parts of the whole network
might be of starlike structure in which a lot of edges concen-
trate on an actor �or a few actors�. In these cases, a finite
fraction of edges may condense on a single actor �or a few
actors�. This phenomenon is called condensation of edges
�25� �in Ref. �26�, the phenomenon is called Bose-Einstein
condensation�. As for the condensation phenomenon, we per-

FIG. 4. The degree distributions of actors, Q�m�, in the case of �a� the delta-function fitness distribution, ����=
��−1�; �b� the uniform
fitness distribution, ����=1 �0���1�; �c� the exponential fitness distribution, ����=e−��0��� +��; �d� the Poisson fitness distribution
with the average 8. In the numerical experiments, we have used the initial network with M =10000, N=8000, �m	=3.0, and �n	=3.75. The
number of the rewiring steps is 300M, and the data are averaged over 20 realizations. In �b�, �c�, and �d�, the solid lines correspond to
Q�m��m−1.87 ,m−2.70, and m−2.94, respectively.
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form more detailed study in Sec. V in order to clarify the
characteristic nature of the fitness distribution responsible to
the condensation of edges.

C. Degree distribution of one-mode projection

The scale-free property of a network composed of only
one type of nodes or a one-mode projection of a bipartite
graph is characterized by means of the degree distribution
P�k� with a fat tail, P�k��k−�. In this subsection, we com-
pare the degree distribution of actors in a bipartite graph and
that of its one-mode projection. Ramasco et al. �4� have dis-
cussed that the power-law behavior of the degree distribution
of actors, Q�m�, for the bipartite graph means that for its
one-mode projection. We here confirm their discussion by
numerical experiments.

An actor connected to a collaboration act with n edges has
n−1 connections to another actors through the collaboration
act. In the present paper, we have assumed that the degree
distribution of collaboration acts, S�n�, is given by an expo-
nential form, and hence we can consider that each collabo-
ration act has approximately the same number of edges, �n	.
Therefore, we assume that the number of actors participating

in each collaboration act is constant and equal to its average
value n= �n	. Within the above approximation, we have a
following relation between the degree of an actor on a bipar-
tite graph, m, and the degree on the one-mode projection, k:

k = m��n	 − 1� . �12�

For large k and m, we consider both k and m to be continu-
ous, so that we have

P̃�k� =
1

�n	 − 1
Q
 k

�n	 − 1
� . �13�

We expect that the transformed degree distribution P̃�k�
agrees with the degree distribution of the one-mode projec-
tion, P�k�. To confirm it, we have performed numerical ex-
periments with the parameter M =10000, N=8000, �m	=3.0,
and �n	=3.75. We set the fitness distribution as the uniform
distribution, ����=1 �0���1�, and repeat 300M rewiring
processes. The data have been averaged over 20 realizations.
Figure 5�a� shows the degree distribution of actors, Q�m�,
and that of the one-mode projection, P�k�. They show similar
behavior, but there is a clear difference between them. The
transformed degree distribution of Eq. �13� is shown in Fig.

5�b�. The degree distributions P̃�k� and P�k� are in good
agreement. Therefore, we consider that Eq. �13� is confirmed
by numerical experiments and the one-mode projection has
the scale-free-like property when the degree distribution
Q�m� has the scale-free-like property for its corresponding
bipartite graph.

D. Comparison between numerical results and analytical
results

As mentioned in Sec. III B, we derive the degree distri-
bution of actors, Q�m�, analytically for the case of the delta-
function fitness distribution ����=
��−1�. We make a com-

FIG. 5. �a� The degree distribution of actors, Q�m�, and that of
the one-mode projection, P�k�. �b� The transformed degree distri-

bution defined by Eq. �13�, P̃�k�, and P�k�. These data were ob-
tained by averaging over 20 realizations with the same parameter
M =10000, N=8000, �m	=3.0, and �n	=3.75. Here we have used
the uniform fitness distribution and 300M steps of the rewiring
process.

FIG. 6. The degree distribution of actors, Q�m�, in the bipartite
graphs with M =10000 and N=8000 in the case of the delta-
function fitness distribution. The number of the rewiring steps is
300M and the data are averaged over 20 realizations. The results for
the average degree �m	=2.0 ��n	=2.5� are shown by circles and
those for �m	=4.0 ��n	=5.0� by squares. The solid lines correspond
to Eq. �16� for respective cases.
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parison between the numerical results and the analytical
results for this case.

Because all actors have the same fitness parameter 1, the
factor Z is obtained as follows:

Z = �
m

�m + 1�qm�1� = M�m	 + M , �14�

so that qm�1� does not diverge because Z�M�m	 in Eq. �9�.
Using Eqs. �9� and �10�, we calculate the number of actors
with m edges by

qm =� d� ����qm��� =� d� 
�� − 1�q0���
�M�m	
Z

�m

= q0�1�
M�m	
Z

�m

� e−m ln�Z/M�m	� = e−m ln�1+�1/�m	��. �15�

Therefore, the degree distribution of actors is expressed as

Q�m� =
qm

�
m=1

�

qm

�
qm

�
1

�

dk qk

= ln
1 +
1

�m	
�e�1−m�ln�1+�1/�m	��.

�16�

In order to confirm the validity of the analytical treatment,
we have performed numerical experiments. In the numerical
experiments, we have used the initial networks with the sizes
M =10000, N=8000, and calculated for two different cases
of the average degrees; one is the case with �m	=2.0 and

�n	=2.5, and the other with �m	=4.0 and �n	=5.0. We have
performed 300M steps of the rewiring process and the data
are averaged over 20 realizations. Figure 6 shows results of
the numerical experiments and their corresponding analytical
results. The solid lines in Fig. 6 correspond to Eq. �16� for
respective cases. The analytical results are in good agree-
ment with the results by the numerical experiments in both
cases.

V. CONDENSATION OF EDGES

A. Investigations in systematic way

In this subsection, we give some detailed investigations
on the condensation of edges mentioned in Sec. IV B. Bian-
coni and Barabási �27� have introduced the fitness param-
eters to their growing network model, and they have found
that the fluctuation of the fitness parameters causes a phe-
nomenon that a finite fraction of edges may condense on a
single node with the highest fitness parameter. The model
proposed by Bianconi and Barabási �27� is the growing one,
but our model in the present paper is the non-growing one
within a kind of adiabatic approximation. Therefore we think
that the condensation phenomenon mentioned in Sec. IV B is
not obvious, and the phenomenon should be studied in more
detail.

We wish to study the condensation phenomenon in a sys-
tematic way. For this aim we use a one-parameter family of
a fitness distribution and investigate its effect to the degree

FIG. 7. The degree distribution of actors, Q�m�, in the case of the fitness distribution described by Eq. �17�. We have used the following
parameters: M =10000, N=10000, �m	=3.0, and �n	=3.0. �a� The case of =0.4. The solid line corresponds to Q�m��m−2.02. �b� The case
of =0.6. The solid line corresponds to Q�m��m−2.10. �c� The case of =1.0. The solid line corresponds to Q�m��m−2.26. �d� The case of
=4.0. The solid line corresponds to Q�m��m−2.47.
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distribution. More definitely speaking, we use the following
fitness distribution:

���� = � + 1��1 − �� �0 � � � 1� . �17�

We control the form of the fitness distribution using the pa-
rameter . When the value of  is small enough, the fitness
distribution has the form similar to the uniform fitness dis-
tribution except near �=1. As increasing the value of , the
fitness distribution changes its form gradually from the con-
cave one �0		1� to the convex one ��1�.

First we have examined the degree distribution of actors,
Q�m�. In numerical experiments, the following parameters
have been used: M =10000, N=10000, �m	=3.0, and �n	
=3.0. We have performed 300M steps of the preferential re-
wiring process, and averaged over 20 realizations. Figure 7
shows the results of the numerical experiments. The result
obtained by using the parameter =0.4 is shown in Fig. 7�a�.
Figure 7�b� is the results with the parameter =0.6. We see
clearly the occurrence of the condensation of edges in Figs.
7�c� and 7�d�, in which the parameters  are 1.0 and 4.0,
respectively. In Fig. 7�a�, the degree distribution does not
have the nondecaying tail representing the condensation phe-

nomenon, and the degree distribution is approximately fitted
by using a straight line. However, the tail of the degree dis-
tribution gradually appears for large values of m as  in-
creases. In Figs. 7�c� and 7�d�, the degree distributions have
the nondecaying tails. Especially, actors with a very large
degree, e.g., m�1000, emerge with the nonzero probability.

We have investigated the influence of the condensation on
various properties of networks, such as a size of a giant
cluster, a cluster coefficient of a one-mode projection. We
have found that the condensation shows a clear effect on the
ratio mmax/K, where mmax is the degree of the most con-
nected actor and K is the total number of edges in the bipar-
tite graph. The value of mmax shows how much the most
connected actor gets edges in the whole network, and then
we consider that the value of mmax could become a measure
of condensation.

Figures 8�a� and 8�b� show the fractions of the total num-
ber of edges connected to the most connected actor, mmax/K,
as a function of . In the numerical experiments, we have
fixed the average degrees of actors and collaboration acts:
�m	=3.0 and �n	=3.0 in Fig. 8�a�, and �m	=2.0 and �n	
=4.0 in Fig. 8�b�. The numerical experiments for three dif-
ferent sizes are performed: M =10000 and N=10000, M
=6000 and N=6000, M =4000 and N=4000 in Fig. 8�a�, and
M =10000 and N=5000, M =6000 and N=3000, M =4000
and N=2000 in Fig. 8�b�. We see that the inflection points
exist near =1.0 in Figs. 8�a� and 8�b�, so that we infer that
the condensation arises for �1. Figures 8�a� and 8�b� indi-

FIG. 8. Fractions of the total number of edges connected to the
most connected actor, mmax/K, plotted as a function of . �a� The
fraction in the case of �m	=3.0 and �n	=3.0. We have calculated for
different network sizes: M =10000 and N=10000; M =6000 and N
=6000; M =4000 and N=4000. �b� The fraction in the case of �m	
=2.0 and �n	=4.0. We have calculated for different network sizes:
M =10000 and N=5000; M =6000 and N=3000; M =4000 and N
=2000.

FIG. 9. Finite-size scaling plots of mmax/K. �a� and �b� corre-
spond to �a� and �b� in Fig. 8, respectively.
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cate that the most connected actor maintains a finite fraction
of the total number of edges even in the thermodynamic limit
when the condensation of edges takes place �in the case of
the large value of �. In contrast, when the condensation
does not occur, namely for small , the number of edges with
the most connected actor gradually decreases with the in-
creasing network size. This situation is similar to the one
given by Bianconi and Barabási �26,27� in their growing
model.

From Figs. 8�a� and 8�b�, we infer that there is a threshold
c=1.0. We then apply the finite-size scaling �28� to the be-
havior of mmax/K near the threshold c=1.0. We set the fol-
lowing finite-size scaling hypothesis near the threshold c:

mmax/K = M−�/�F„M1/�� − c�… , �18�

where F�x� is a scaling function, � and � are critical expo-
nents. In Figs. 9�a� and 9�b�, we plot �mmax/K�M�/� as a

function of M1 � ��−c�. The parameters for numerical ex-
periments in Figs. 9�a� and 9�b� are the same as in Figs. 8�a�
and 8�b�, respectively. We here have chosen the critical ex-
ponents as �=1.6 and �=5.0. Although we have used the
different parameters of the average degrees �m	 and �n	 in
Figs. 9�a� and 9�b�, the common critical exponents give good
scaling results in both cases. Therefore, we expect that there
is a certain universality in the condensation phenomenon
though more detailed numerical experiments and discussion
would be needed for further study of the critical phenom-
enon.

From these results, we consider that the condensation of
edges arises when there are a relatively small number of
actors with large fitness parameters. This agrees with the fact
that the condensation phenomenon takes place in the cases of
the exponential fitness distribution and the Poisson fitness
distribution, as mentioned in Sec. IV A. The condensation
phenomenon could be discussed in terms of the zero-range
process �22,29�, and a related model of nongrowing net-
works has been proposed �30�. However, most of these
works have focused their attention in homogeneous cases for
fitness parameters. Generally speaking, the heterogeneous
case such as the model in the present paper, in which fitness
parameters are different from each other, is difficult to be
analyzed �31�. Although we have not succeeded in the ana-
lytical treatments for the condensation phenomenon in our
model yet, the critical exponents obtained by the finite size
scaling would be important to study the condensation phe-
nomenon from a viewpoint of statistical physics.

B. Illustration of networks

Finally, we give examples of network structure obtained
by numerical experiments for the fitness distribution given in
Eq. �17�. We have set the initial parameters as M =400, N
=400, �m	=2.0, and �n	=2.0 for the numerical experiments,
and here we use =0.4 and 8.0 as the parameter of the fit-
ness distributions. In these cases, we have checked that a
stationary state is reached with 100M rewiring steps. After
100M steps of the preferential rewiring process, we have
made the one-mode projection from the obtained bipartite
graph and removed isolated actors from the one-mode pro-
jection. Figures 10�a� and 10�b� show the one-mode projec-
tions without isolated actors. In Figs. 10�a� and 10�b�, each
edge is depicted as a single edge even if the edge is multiple.
There are 165 actors in Fig. 10�a�, and 108 actors in Fig.
10�b�. In Fig. 10�b�, two actors get many more edges than
the other actors and these actors make a starlike structure in
the network. This starlike structure corresponds to the con-
densation phenomenon.

VI. CONCLUSION

We have proposed a model for generation of complex
bipartite graphs. This model is based on the preferential at-
tachment mechanism with a fitness distribution function, but
a bipartite graph in our model is not growing: the number of
collaboration acts, that of actors, and that of edges are fixed.
This nongrowing model is considered to be an adiabatic ap-

FIG. 10. Illustrations of the obtained giant cluster. �a� The case
with the fitness distribution of Eq. �17� with =0.4. �b� The case
with =8.0. In both cases, we have used the parameters of M
=400, N=400, �m	=2.0, and �n	=2.0. After 100M steps of the re-
wiring process, we have made the one-mode projection of the ob-
tained bipartite graph and removed isolated actors.

GENERATION OF COMPLEX BIPARTITE GRAPHS BY … PHYSICAL REVIEW E 72, 036120 �2005�

036120-9



proximation for collaboration networks in which the size of
networks does not change rapidly, but the structure of the
networks change with time rapidly. The preferential attach-
ment mechanism alone does not give networks with the
scale-free property in the nongrowing case. We have shown
that one more factor is necessary in order to generate net-
works with the scale-free property. The factor is the fitness
parameter, which corresponds to the propensity of nodes to
gain edges. We have performed various numerical experi-
ments in which the preferential rewiring process is applied to
bipartite graphs, and demonstrated that some obtained net-
works have the scale-free-like property by using suitable fit-
ness distributions. It has been shown that a non-fat-tailed
fitness distribution can generate a network with a fat-tailed
degree distribution. We have also given analytical results in a
special case in which the degree distribution is derived ex-
plicitly. Furthermore, it has been clarified that the condensa-
tion of edges takes place when there are a small number of
actors with large fitness parameters. We have estimated the

critical exponents by using the finite-size scaling.
We believe that nongrowing models are important in or-

der to understand various complex networks, because the
nongrowing models are considered as a kind of adiabatic
approximation of some real networks. For this reason, we
have investigated the nongrowing model for generation of
complex bipartite graphs in the present paper. As a future
work, the other degree distribution of collaboration acts,
S�n�, is also interesting and should be investigated �for ex-
ample, the Gaussian distribution or the Poisson distribution�.
Furthermore, we are also interested in a relationship between
the nongrowing model and the zero-range process.
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